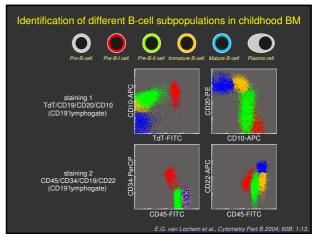


Discrimination between normal and malignant immune cells in blood, bone marrow and lymphoid tissues genetic events days Normal ltiple mvelo ALL. AML weeks to months treatment Laboratory methods - Cytomorphology and immunophenotyping

- Molecular diagnostics, e.g. PCR-based clonality diagnostics and
- molecular classification via detection of oncogenetic defects

Diagnostics for hematological malignancies

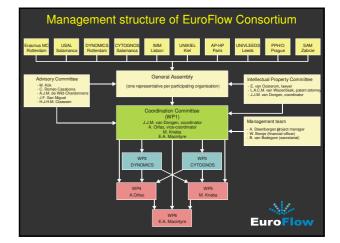
1. Making the diagnosis


Normal \leftrightarrow reactive/regenerating \leftrightarrow malignant Annually > 300,000 new patients with a hematological malignancy in developed countries

2. Classification of hematopoietic malignancies

- relation with prognosis
- relevance of risk-group definition in treatment protocols
- Based on differentiation characteristics and particularly on chromosome aberrations, resulting in fusion gene transcripts or aberrantly (over) expressed genes

3. Evaluation of treatment effectiveness


- Detection of minimal residual disease (MRD):
 - MRD-based risk-group stratification (treatment reduction or treatment intensification)
 - Annually > 400,000 follow-up samples in leukemia patients (ALL, AML, CML)

Flow cytometric immunophenotyping of normal and malignant leukocytes Gaps and areas for improvement (Status in 2005)

- no technical standardization in flow cytometry
- no guidelines for selection of the appropriate antibody clones
- virtually no new markers introduced over a decade (stand-still in development)
- many oncoproteins (including fusion proteins) not yet included in immunostaining protocols;
- 3- and 4-color flow cytometry has many limitations: limited sensitivity and limited specificity
- management of large data files from multiple samples is complex and time-consuming; new software needed for:
 - fast and easy analysis of data;

 - automated patient reports;
 introduction of flow data into electronic hospital systems

5th EuroFlow Educational Workshop, Paris, FR, 9 March 2011

EuroFlov

Achievements of the EuroFlow Consortium

- Multicolor flow cytometry (≥8 colors) with full technical standardization inclusion of violet laser and selection of appropriate fluorochromes standardization of instrument settings and laboratory protocols detailed testing and comparison of antibody clones and conjugated antibodies (multical second) (multiple companies)
- Implementation and development of novel software

 fast and easy handling of large data files (including automated pattern recognition)

 combining multiple tubes: calculation and APS view
- mapping of diagnosis and follow-up leukemia samples against templates of "normal/control" samples

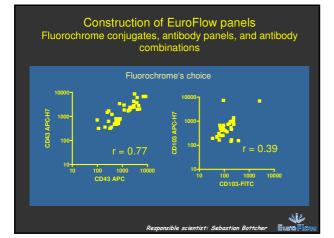
Development of 8-color antibody protocols for diagnosis, classification and

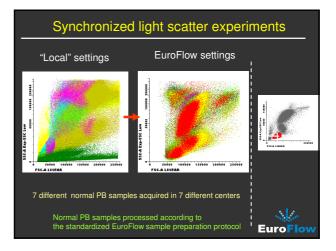
- monitoring of hematological malignancies screening tubes (include recognition of normal leukocyte subsets)
- multi-tube panels for diagnosis and classification per disease category special tubes for MRD monitoring per disease category

- Standardization in diagnostic flow cytometry
- Standardization according to literature generally refers to: lists of CD codes and markers per disease category rarely a specific antibody is recommended and (almost) never a fluorochrome is proposed

EuroFlow

HOWEVER: Standardization according to GLP guidelines demands for much higher levels of standardization


EuroFlow standardization aims at:


- IOFIOW standardization aims at: usage of comparable flow cytometers (3 lasers and ≥ 8 colors) full standardization of instrument settings (e.g. based on standard beads) standardized laboratory protocols and immunostaining procedures (SOP's) careful selection of optimal antibody clones per marker/CD code

- careful selection of optimal antibody clones per marker/CD code selection of optimal 8-color antibody combinations and fluorochromes design of combinations of multiple 8-color tubes: estimation and APS view new software for fast and easy data analysis with automated pattern recognition recognition of normal and abnormal leukocyte subsets (complete differentiation pathways) with the same immunostaining protocols mapping of new patient samples against large data base of earlier collected patient samples, analyzed with the same immunostaining protocol

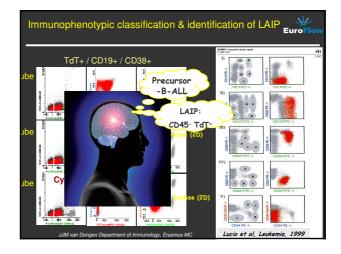
Fluorochrome	Excitation	Emission		Lasers	
	Peak (nm)	Peak (nm)	Violet	Argon	Helium-Neon
Pacific Blue	405	455			
AmCyan	405	490			
Pacific Orange	405	550	+		
Marina Blue	365	460			
FITC	495	520			
Phycocrythrin (PE)	565	575			
PE Texas Red	565	615			
PerCP	488	678			
PerCP-Cy5.5	488	695			
PE-Cy7	565	770			
Allophycocyanin (A	PC)650	660			
Alexa 700	635	720			
APC-H7	650	770			

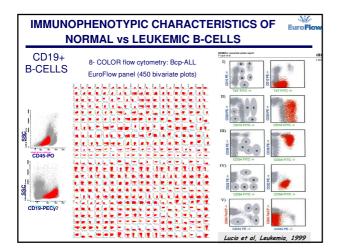
uroFlow Flu	iorochrome	es for 8-color	flow cytor	netric im	munophenotyping
Fluorochrome	Excitation Peak (nm)	Emission Peak (nm)	Violet	Lasers Argon	Helium-Neon
Pacific Blue/Horizo AmCyan Pacific Orange/Hor	405	455 490 550	+ + +		
Marina Blue FITC	365 495	460 520			
Phycoerythrin (PE PE Texas Red) 565	575 615			
PerCP	488	678			
PerCP-Cy5.5 PE-Cy7	488 565	695 770			
Allophycocyanin (<i>i</i>	APC)650	660			+
Alexa 700 APC-H7	635 650	720 770			+ +

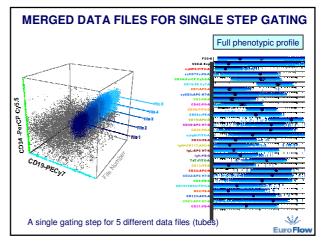
5th EuroFlow Educational Workshop, Paris, FR, 9 March 2011

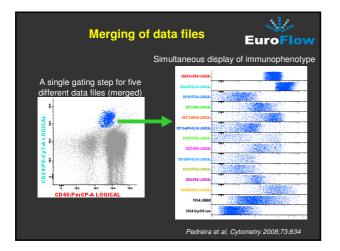
Achievements of the EuroFlow Consortium

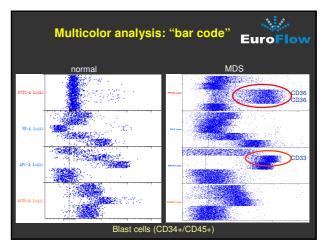
EuroFlow

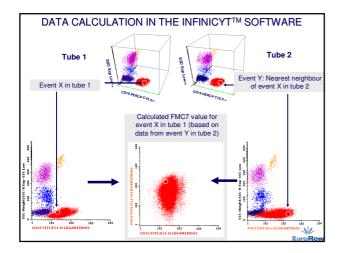

- Multicolor flow cytometry (≥8 colors) with full technical standardization inclusion of violet laser and selection of appropriate fluorochromes standardization of instrument settings and laboratory protocols detailed testing and comparison of antibody clones and conjugated antibodies (multical second) (multiple companies)
- Implementation and development of novel software

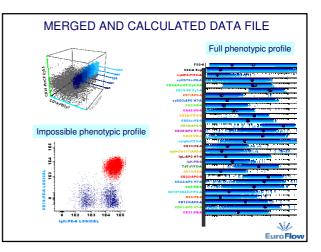

 fast and easy handling of large data files (including automated pattern recognition)

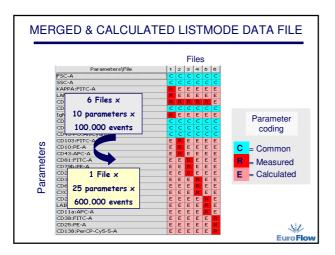

 combining multiple tubes: calculation and APS view
- "mapping of diagnosis and follow-up leukemia samples against templates of "normal/control" samples

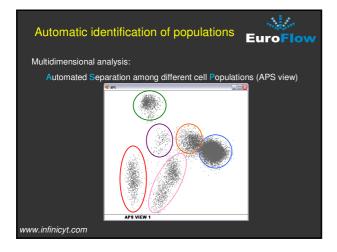

Development of 8-color antibody protocols for diagnosis, classification and monitoring of hematological malignancies – screening tubes (include recognition of normal leukocyte subsets)

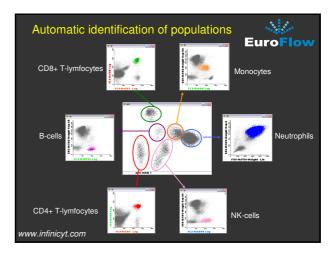

- multi-tube panels for diagnosis and classification per disease category special tubes for MRD monitoring per disease category

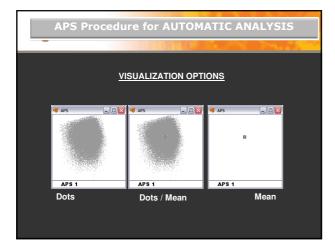


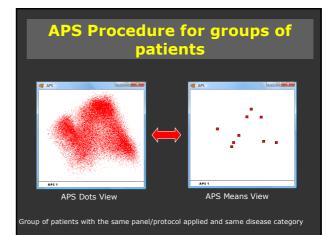


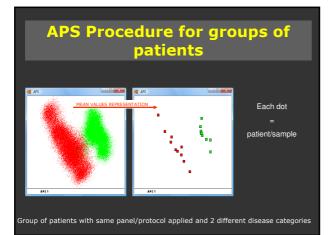


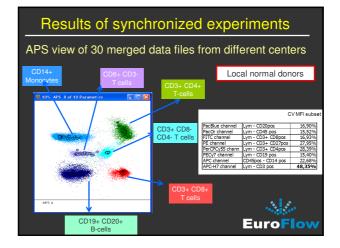









	" Merging" by Infinicyt™ program												
	Integration of results from multiple tubes based on 4 to 6 common parameters per tube												
Colors	No. of tubes	Total no. of antibodies	No. of commo antibodies	<u>n parameter</u> s Scatter	End result no. of parameters								
4-colors	8	32	2	2	20 (18+2)								
6-colors	6	36	3	2	23 (21+2)								
8-colors	4	32	4	2	22 (20+2)								
8-colors					25 (23+2)								
			lti-tube antibody on per tube in ea		EuroFlow								



Paris, FR, 9 March 2011

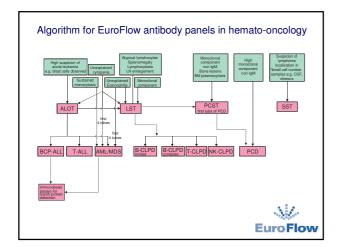
EuroFlow

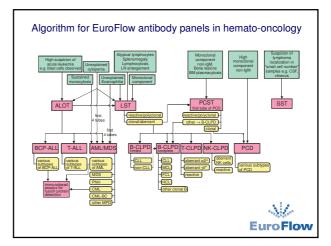
Achievements of the EuroFlow Consortium

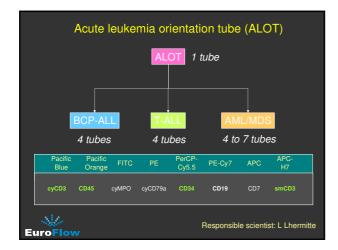
Multicolor flow cytometry (≥8 colors) with full technical standardization

- inclusion of violet laser and selection of appropriate fluorochromes standardization of instrument settings and laboratory protocols
- detailed testing and comparison of antibody clones and conjugated antibodies (multiple companies)

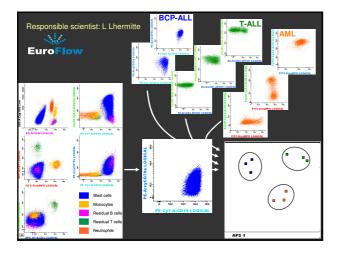
- Implementation and development of novel software fast and easy handling of large data files (including automated pattern recognition) combining multiple tubes: calculation and APS view mapping of diagnosis and follow-up leukemia samples against templates of "normal/control" samples

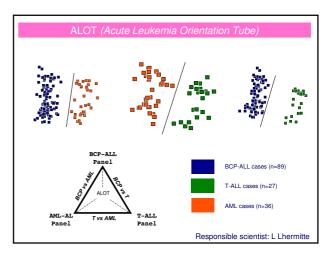

Development of 8-color antibody protocols for diagnosis, classification and monitoring of hematological malignancies - screening tubes (include recognition of normal leukocyte subsets) - multi-tube panels for diagnosis and classification per disease category - special tubes for MRD monitoring per disease category

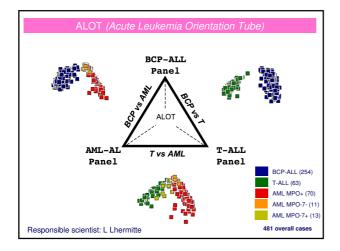

EuroFlow antibody protocols

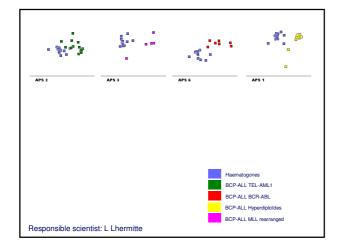

EuroFlow

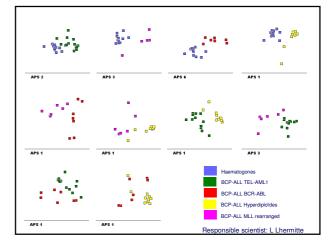
Development of 8-color multi-tube antibody protocols (3 or 4 antibodies in common per tube in each protocol)

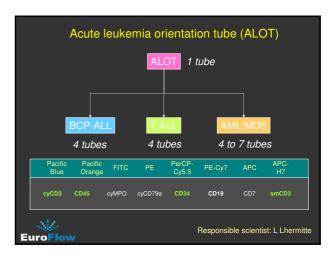

- 1. Screening tubes (include recognition of normal leukocyte subsets)
 - Acute leukemia orientation tube (ALOT): 1 tube (L Lhermitte)
 - Lymphoid screening tube (LST): 1 tube (J Flores Montero)
 - Small sample screening tube (SST): 1 tube (AW Langerak)
 - Plasma cell dyscrasia tubes (PCD): 2 tubes (J Flores Montero)
- 2. Multi-tube panels for characterization per disease category
- B-cell precursor ALL (BCP-ALL) protocol: 4 tubes (L Lhermitte)
- T-cell ALL (T-ALL) protocol: 4 tubes (V Asnafi)
 AML/MDS protocol: 7 tubes (VHJ van der Velden)
- B chronic lymphoproliferative diseases (B-CLPD): 5 tubes (S Böttcher)
 T chronic lymphoproliferative diseases (T-CLPD): 6 tubes (J Almeida)
 NK chronic lymphoproliferative diseases (NK-CLPD): 3 tubes (J Almeida)

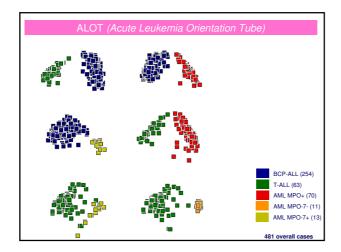


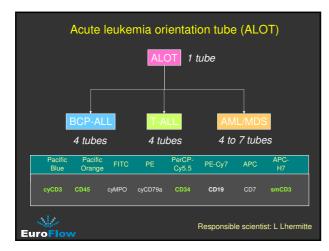


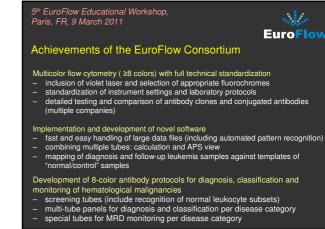

S	Ŭ		eukem		ntation	Tube (eukemias)*
	Pacific Blue	Pacific Orange	FITC	PE	PerCP- Cy5.5	PE-Cy7	APC	APC- H7
	cyCD3	CD45	суМРО	cyCD79a	CD34	CD19	CD7	smCD3
	* Backbone markers	s are indicated in b	old; cy= cytopi	asmic; sm- surfac	e membrane.			
Ξ	uroF	, low						

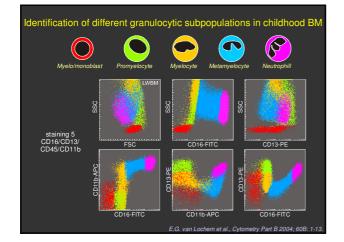


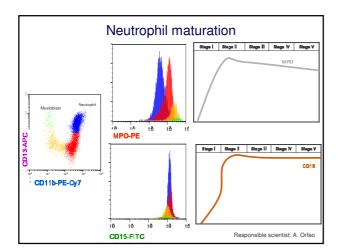


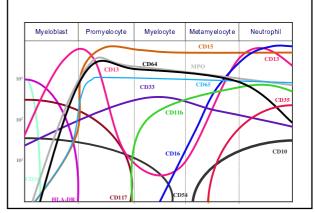

				``		, ,			scientist: L Lhermitte
Tube	Pacific Blue	Pacific Orange		PE	PerCP- Cy5.5	PE-Cy7	APC	APC-H7	
1	CD20	CD45	CD58	CD66c	CD34	CD19	CD10	CD38	Diagnosis and classification of BCP-ALL; Detection of LAP markers; Detection of phenotypes associated with molecular aberrations
	smlgĸ	CD45	cylgµ	CD33	CD34	CD19	smlgµ and CD117	smlg).	Diagnosis and classification of BCP-ALL;
	CD9	CD45	nuTdT		CD34	CD19	CD22	CD24	Diagnosis and classification of BCP-ALL; Detection of phenotypes associated with molecular aberrations; Detection of LAP markers
	CD21	CD45	CD15 and CDw65	NG2	CD34	CD19	CD123	CD81	Subclassification of BCP-ALI Detection of LAP markers; Detection of phenotypes associated with molecular aberrations

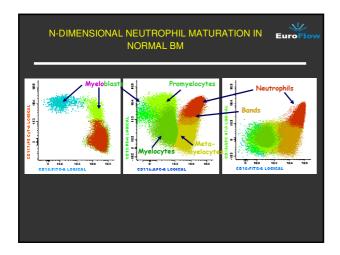


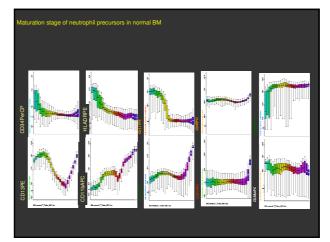


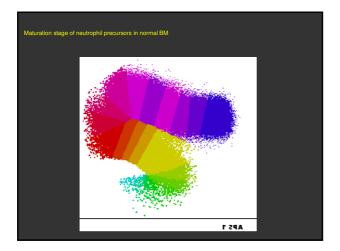

Tube	Pacific Blue	Pacific Orange		PE	PerCP- Cy5.5	PE-Cy7	APC	APC- H7	
1	cyCD3	CD45	nuTdT	CD99	CD5	CD10	CD1a	smCD3	Diagnosis and classification of BCP-ALL; Detection of LAP markers; Detection of phenotypes associated with molecular aberrations
	cyCD3	CD45	CD2		CD4	CD8		smCD3	Diagnosis and classificatio of BCP-ALL;
	cyCD3	CD45	TCRγδ	TCRαβ	CD33	CD56	cyTCRβ	smCD3	Diagnosis and classificatio of BCP-ALL; Detection of phenotypes associated witi molecular aberrations; Detection of LAP markers
	CyCD3	CD45	CD45	CD13	HLADR	CD45RA	CD123	smCD3	Subclassification of BCP- ALL; Detection of LAP markers; Detection of phenotypes associated wit molecular aberrations


В-	ceii t	Jiecui	SOF F	<u> </u>	BCP-	ALL)	Resp	Donsible	scientist: L Lhermitte
Tube	Pacific Blue	Pacific Orange		PE	PerCP- Cy5.5	PE-Cy7	APC	APC-H7	
1	CD20	CD45	CD58	CD66c	CD34	CD19	CD10	CD38	Diagnosis and classification of BCP-ALL; Detection of LAP markers; Detection of phenotypes associated with molecular aberrations
	smlgĸ	CD45	cylgµ	CD33	CD34	CD19	smlgµ and CD117	smlg).	Diagnosis and classification of BCP-ALL;
	CD9	CD45	nuTdT		CD34	CD19	CD22	CD24	Diagnosis and classification of BCP-ALL; Detection of phenotypes associated with molecular aberrations; Detection of LAP markers
	CD21	CD45	CD15 and CDw65	NG2	CD34	CD19	CD123	CD81	Subclassification of BCP-ALL Detection of LAP markers; Detection of phenotypes associated with molecular aberrations






Multi-tube EuroFlow classification panel for AML/MDS Responsible scientist: VHJ van der Velden												
Tube	Pacific Blue	Pacific Orange		PE	PerCP- Cy5.5	PE-Cy7	APC	APC- H7				
AML/ MDS												
	HLADR	CD45	CD16	CD13	CD34	CD117		CD10	Diagnosis and subclassification of AML and PNH especially focused on neutrophilic lineage			
	HLADR	CD45	CD35	CD64	CD34	CD117	IREM2		Diagnosis and subclassification of AML and PNH especially focussed on monocytic lineage			
	HLADR	CD45	CD36	CD105	CD34	CD117	CD33		Diagnosis and subclassification of AML especially focused on erythroid lineage			
	HLADR	CD45	nuTdT	CD56	CD34	CD117		CD19	Aberrant expression of lymphoid-associated markers and abnormal lymphoid maturation			



Phenotypic changes during normal neutrophil differentiation

5th EuroFlow Educational Workshop, Paris, FR, 9 March 2011

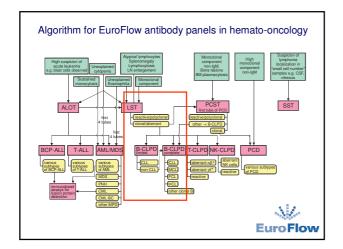
EuroFlow

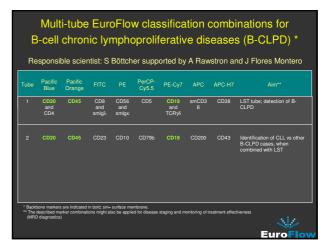
Achievements of the EuroFlow Consortium

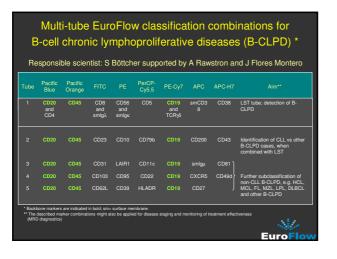
 Multicolor flow cytometry (≥8 colors) with full technical standardization

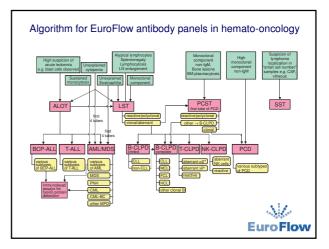
 - inclusion of violet laser and selection of appropriate fluorochromes

 - standardization of instrument settings and laboratory protocols


 - detailed testing and comparison of antibody clones and conjugated antibodies


 (multile comparison)


 (multiple companies)


- Implementation and development of novel software fast and easy handling of large data files (including automated pattern recognition) combining multiple tubes: calculation and APS view mapping of diagnosis and follow-up leukemia samples against templates of "normal/control" samples

Development of 8-color antibody protocols for diagnosis, classification and monitoring of hematological malignancies screening tubes (include recognition of normal leukocyte subsets) multi-tube panels for diagnosis and classification per disease category special tubes for MRD monitoring per disease category

5th EuroFlow Educational Workshop, Paris, FR, 9 March 2011

EuroFlow

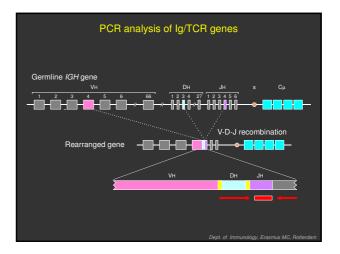
Achievements of the EuroFlow Consortium

- Multicolor flow cytometry (≥8 colors) with full technical standardization inclusion of violet laser and selection of appropriate fluorochromes standardization of instrument settings and laboratory protocols detailed testing and comparison of antibody clones and conjugated antibodies (multical second) (multiple companies)
- Implementation and development of novel software

 fast and easy handling of large data files (including automated pattern recognition)

 combining multiple tubes: calculation and APS view
- "mapping of diagnosis and follow-up leukemia samples against templates of "normal/control" samples

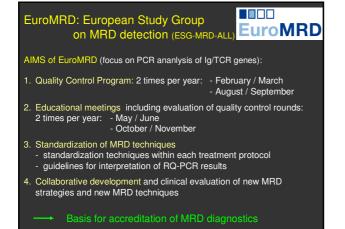
Development of 8-color antibody protocols for diagnosis, classification and

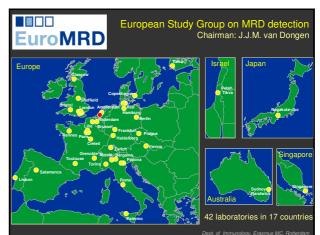

- monitoring of hematological malignancies screening tubes (include recognition of normal leukocyte subsets)
- multi-tube panels for diagnosis and classification per disease category special tubes for MRD monitoring per disease category

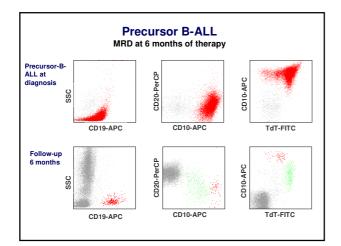
relative frequency of leukemic cells

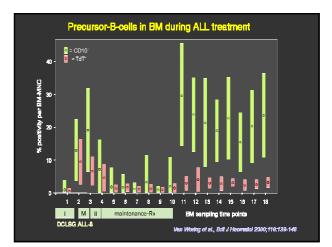
DCLSG ALL-8

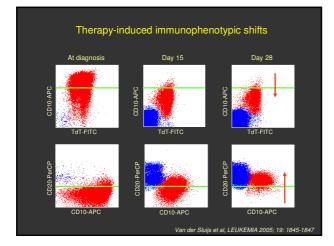
Detection of minimal residual disease in ALL

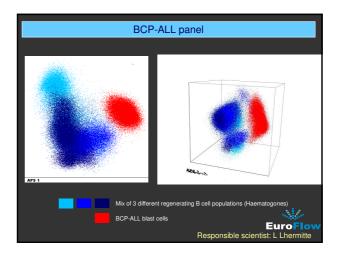

Technique	Applicability	Detection limit	Remark
Flow cytometry (4 colors)	BCP-ALL: 85% T-ALL: 90%	(10 ⁻³ -) 10 ⁻⁴	Fast, but variable sensitivity because of similarities between normal (regenerating) cells and malignant cells
PCR of lg/TCR genes	BCP-ALL: 95% T-ALL: 95%	10 ^{.4} -10 ^{.5}	Time consuming and relatively expensive (junctional region sequencing), but applicable in \geq 95% of lymphoid malignancies
PCR of fusion transcripts	BCP-ALL: 40% T-ALL: 25%	10 ⁻⁴ -10 ⁻⁶	Limited applicability in ALL, but potentially useful in specific subgroups, e.g. BCR-ABL cases in specific protocols

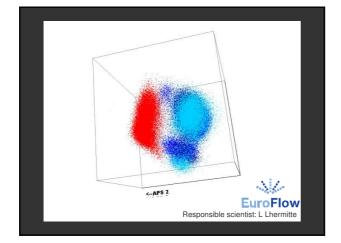


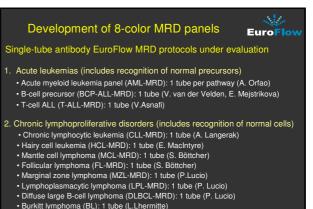

Detection of minimal residual disease (MRD)


follow-up


in years







- Burkit lymphoma (BL): 1 tube (L.Lhermitte)
 T-chronic lymphoproliferative diseases (T-CLPD-MRD): 1 tube (J. Almeida)
 Multiple myeloma (MM): 1 tube (J. Flores)

Achievement of the EuroFlow Consortium:	www.euroflow.org University Institutes / M
 Full technical standardization of multicolor flow cytometry (≥8 colors) standardization of instrument settings and laboratory protocols selection of fluorochromes and selection of antibody clones per marker EuroFlow protocols work on all tested ≥8 colors flow cytometers: DAKO Cyan, LSR-II, FACS Canto-II; "late arrivals" (Navios and Gallios) still to be tested (new Workpackage) 	Errasmus MC, Rotterdam, USAL, Salamanca, ES IMM, Lisbon, PT UNIKIEL, Kiel, DE AP-HP, Paris, FR
 Implementation and further development of novel software: Infinicyt fast and easy data handling with automated pattern recognition combining multiple tubes: calculation and APS (principle component analysis mapping of diagnosis and follow-up leukemia samples against templates of "normal/control" samples 	UNIVLEEDS, Leeds, GB DPH/O, Prague, CZ SAM, Zabrze, PL DCOG, The Hague, NL KUL, Leuven, BE
 Development of 8-color antibody protocols for diagnosis, classification and monitoring of hematological malignancies 8-color panels are based on recognition of normal cells & differentiation pathways diagnosis and classification tubes are ready; MRD tubes in development flexibility within panels: deletion and inclusion of markers and tubes is possible 	HGSA, Porto, PT UFRJ, Rio de Janeiro, BR Companies (SME's)

 Www.euroflow.org
 EuroFlow participants

 University Institutes / Medical Schools
 Ecrevity

 Erasmus MC, Rotterdam, NL
 J.J.M. van Dongen, V.H.J. van der Velden

 USAL, Salamanca, ES
 A. Orfao, J. Flores, J. Almeida, Q. Lecrevisse a.o.

 IMM, Lisbon, PT
 P. Lucio, A. Mendonça, A. Parreira a.o.

 UNIKIEL, Kiel, DE
 M. Kneba, S. Böttcher, M. Ritgen, M. Brüggemann a.o.

 AP-HP, Paris, FR
 E. Macintyre, L. Lhermitte, V. Asnafi a.o.

 UNIKIEEDS, Leeds, GB
 S. Richards, A.C. Rawstron. P. Evans a.o.

 DPH/O, Prague, CZ
 O. Hrusak, T. Kalina, E. Mesjstrikova a.o.

 SAM, Zabrze, PL
 T. Szczepanski, L. Sedek a.o.

 DCOG, The Hague, NL
 E. Sonneveld, A. van der Sluijs-Gelling a.o.

 KUL, Leuven, BE
 N. Boeckx a.o.

 HGSA, Porto, PT
 M. Lima, AH Santos

 UFRJ, Rio de Janeiro, BR
 C. Pedreira, E.S. Costa

 Companies (SME's)
 DYNOMICS, Rotterdam, NL

 DYNOMICS, Rotterdam, NL
 E. Dekking, F. Weerkamp a.o.

CYTOGNOS, Salamanca, ES M. Martin, J. Bensadon, J. Hernandez, M. Muñoz a.o.

4. Large EuroFlow data base linked to Infinicyt software

MUCHAS GRACIAS